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Mechanical and electric fields in a piezcceramic plate are studied with the 
help of asymptotic integration of the three-dimensional equations of electro - 
elasticity. It is established that the electroelastic state of the plate can be 

separated into the internal state, and a boundary layer-type state. Derivation 
of the solution of the boundary layer-type state is reduced to an infinite system. 
A boundary value problem is formulated in the first approximation in order to 
establish the internal electroelastic state of the plate. 

1, Let 52 = 8 X [--h, h] denote the region occupied by the plate ,where 
S is the middle surface and 2h its thickness, 8s is the boundary of S, 

I’ = dS X [--h, h] is its lateral surface, S, are the plate ends and a is the 
characteristic dimension of S. The plate is referred to the Cartesian Or$+Z3 - 

coordinatesystemwith theoriginon S and the ox:,-axis orthogonal to S. 
We assume that the material has been previously polarized along the plate thick- 

ness and, that its electroelastic properties are described by the relations [l] 

o 11 = CllE 11 's + Cl2Q22 + C13ES33 - 31 eE 3 

022 = Cl2 ES 11 + Cl1 % 22 + Cl3 -% eE 33 - 31 3 

(~33 = c13? (sll + s22) + c33Es33 - e3,E3 

(3 12 = (CllE - Cl27 Sl2 = 2GxES12 

ui3 = 2C4aESi3 - elsEi 

Di = 2e,,si3 + Ell’Ei (i = I, 2) 

D3 = e31 (sll + s22) + e3gsa3 + &33SE3 

(1.1) 

Here cii E are the moduli of elasticity, eij are the piezomoduli , EijS are the 
dielectric permeabilities , E, denote the components of the electric field intensity 

vector, D!, are the components of the electric induction vector, a,,,1 are the com- 
ponents of the stress tensor and s,[ are the components of the deformation tensor. 

Supplementing the relations (1.1) with the Cauchy equations of equilibrium 
and the Maxwell equations 

(1.2) 
o ml,! = 0, Qi,k = 0, rot E = 0 (E = -grad $) 

we obtain a closed system of equations in terms of the displacements ui and the elec- 
tric potential v , describing the electroelastic equilibrium of the plate. 

Let us introduce the notation 
Ui = - 9 I d, aij = CijE / C, bij = eijd I C, 3Lij = Eifd' / C 

& = 51, /a, dh_ = d / at, (E; = 1, 2), A, = 8,” + a22, 

E=x,lh,~=hla 
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Here c and denote certain characteristic parameters of the plate material, 
with the dimensions of cii z and E respectively : when dealing with concrete 
calculations, they can be chosen e. g. as follows: c = cssz, 1 d 1 = 1 P 1 where 

P is the preliminary polarization vector of the ceramic. We shall assume that the 
plate is surrounded by vacuum. 

Let the following conditions hold at the plate ends: 

%3/S* = 0, i = 1, 2, 3; u4 I S+ = c?acp = const, u4 1 S_ -= 0 11.3) 

Let also the stresses and the electric charge surface density h (n, s are the 
local coordinates of the contour ~9s [2J) be given on the lateral surface 

o, jr = CA’ (s, E), o,, Ir = CT (s, E) 

ens Ir = cz (% E), - D, Ir = + A (s, E) 

We assume that the constant ‘p in the boundary conditions is not known, and 
this corresponds to the case of the plate ends which are fully electroded, but not closed 
[3 1. The electrodes are assumed to be infinitely thin, therefore their influence on the 
elastic properties of the plate can be neglected. 

2. To solve tbe proposed problem we use the system of solutions of the equa - 
tions of electroelasticity (1.1) , (1.2 ) which satisfy the following homogeneous con - 
ditions at the plate ends: 

Qj [ s+ = 0 (i = 1, 2, 3), up 1 St = 0 - - 

The author of [4 ] used the methods of f5 ] to construct a complete system of 
homogeneous solutions for a plate made of an electroelastic material, with the pro- 
perties varying across the thickness. Using the results of these papers, we give the fol- 
lowing system of homogeneous solutions for the problem under consideration : 

The biharmonic solution 

&VI =a&{Q - a, [at, + I’,@, + e2& (Q&J’, + q,F@,% i = 1,2 12* ') 

2&3lf) = a (a?2 + tA&i W',@, - 43 (a2 - PO) @2]) 

u4(f) = a2 44 (P2 - P,) A, @2 

Here Pj (E) denote the Le.gendre polynomials, @‘I and as are two-dimen- 
sional biharmonic functions and C& , p2 are conjugate harmonic functions connected 
with CD, by the equation 

+~r = d,cp, = x&,G F(E) = 5" - 3E 

Qa = - =1s (2% - $1 1 (3%& 91 = 3% 

Qa - - I(+4 + a,,Fg, + (b + b31) g2 + ani/@a44),q, = or I 3 

44 = ga / 3, x = (%I - am2 1 %s) / (%I + %a - 2%? / ass) 

k71 = - (%3h33 + bSlb33) / (b3g2 + a33h33)9 & = (as&31 - 

%3b33) / (b332 + a,,~,,) 

The potential solution 
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ReYk>O 

k=l (2.2) 

uk (8 = %fkR - Ykkfk 
wk (8 = q6fkw - ($3 - 

+ @k 

'%d ?k2jk' + @kn - q~yk2ek 

Here ‘& are the eigenvalues and {jk, @k} denote the eigen pairs of functions 
(the analog of the Papkovich functions of the classical theory of elasticity) of the 
spectral problem 

49 = bl / a449 QlO = a11 / g, Qll = (al& - $,b,l) / g 

q12 = h33 + &#3qll + b31q7v ql3 = li,, + bl5qS? i? = alla83 

and the functions Ak in (2.2 ) satisfy the relation 

(e2Ao - yttz) A, (%1, EzJ = 0 

The rotational solution 

13) 
u1 = a3 5 tP(E)d& u:3) = - a3 5 tP(Q &B, 

p-1 p=1 

u3 
(3) Z 0 r= $(3), 6, > () 

where 

It should be noted that contrary to the elastic case [6], the spectrum (7%) of 
the problem (2.3 ) depends on the electroelastic properties of the material. Neverthe- 
less, for the majority of the types of piezoceramics used (PZT-4, PZT-5, TsTC-19, 
etc.) the spectrum distribution has’certaincommon features: the spectrum {yr} is 
discrete, symmetrically distributed in the complex planet and has a point of accumu- 
lation at infinity ; none of Yk are pure irnag~a~ ; when 1 y 1 --f 00 (Re Y > 0) 
three asymptotes of the distribution of Yk exist, one of them represented by the real 
axis and the other two by the straight lines arg y = f~, v # 0. 

Let us give the formulas for the asymptotic values of the real and complex Yk 

Y,‘ = [(tz - 1) n + 7X / 2 - tx] / /.&i 

Y1n = - i& (In 1 G, + iGa 1 -t- arg [(-I>’ (G, + iG,)I + 
(2.5) 

2 (m - 1) ni> i (2 1 p, I) 
f=O, 1; r8=2,2,3 ,._.: m = 1, 2,3,. . . 
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tg a = G, I G,, G, = Xl Im (YJ,) / G 

G, = Re [X, (Y,Z, - Z,P,)l / G, G = Im [X2 (Y,Z, - 

ZIP,)1 - X,Im (Y&T,) 

Im pi > 0, Re Yk > 0, Im yk > 0 

The relations connecting the constants clj, Xi, Yj. and Zj with the elec- 
troelastic characteristics of the plate material are given in [7 1, 

It iS Significant that even the first values of Tk (n, m = 1) obtained from 
(2.5 ) differ from the exact values [8 ] by not more than 6 70. 

Let us explain briefly some properties of the homogeneous solutions. The po - 

tential and rotational solutions contain, as implied by (2.2)and (2.4 ), the functions 

Ak and B, which represent the solutions of equations in which the parameter 9 

accompanies the higher order derivatives. using the properties of the spectra {yk) and 

{6,) we can show that for small e the solutions of these equations resemble a boun- 

dary layer localised at the boundary as [2]. For this reason the potential and rotational 
sol ution~ decay rapidly with increasing distance from the lateral surface I. Thus the 

inner electroelastic state of the plate is determined by the biharmonic solution. 
The inhomogeneity apparent in the condition (1.3 > can be removed using a 

particular solution of the form 

@) = 6 = r&/4), LI:,(~) = Sab,,cpk /(2a,,), uJ4’ = zs2a(p (E + 1) ! 2 

Then the general solution ~1 = ul(‘) i- . . . $- ~1~~) (I = 1, 2,3,4) will satisfy 

the equations of electroelasticity (1.1) and (1.2 ) and the boundary conditions (1.3 ) . 

3, In order to satisfy the boundary conditions at the lateral surface r of the 

plate, we use the variational principle formulated in [4]. In the present case the prin- 
ciple can be written in the form 

(unE - 2) (a&D,, + 6~~‘) - (D, + h) 6~:‘) ds dg - 
6~~) \\ DedX = 0 

s+ 

where (R is the radius of curvature of o’s) 
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Qs(*)= -(&&-&&)(.), H=l+naR-” 

XI = (a18b3 - a&J / a3s9 “2 = %Pl + (a13q3 + ~3~q4)p2~ 

x3 = 3 b44q2 + (a44q3 + b,,q4) / 21 (E" - f), x1 = 3 b,,q, + 
(bq3 - hq4) 121 (E" - 1) 

% = h2 + ad33) /a339 x6 = b3, (2% - 1) + b3,ql 
dk (E) = ha (qdk’ - q13~k) 

choosing u~~~i),u~~l~, a,, dQt, I dn, Ak, BP and ~&*f as the independent 

variations of the boundary values of the fimctions, we obtain, as in [S J, the relations 

defining the boundary conditions for the functions @i, Ak and BP and the int- 

egral condition for obtaining the induced potential difference 4p which characterizes, 

to a certain extent, the interaction of the elastic and electric fields 

a6fi Qn 2@,1 - e2 jI akcoJAk)j c ( n==Q 
= NO (3.2) 
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ZEN, = 5 N dg - E’H~(P, 2cTo = 4 T d& 
-1 

2&Y, =: ; zd$ 
-1 -1 

I 

s 

z 

2ellf,, = TEdE, 2~8f,,, = \ Ng d& EN,, = [ Na,dE - 
-1 -11 1; 

9 ~~~)~ 

ET, = i Ta, dE, E%,,~ = i ZO),,~ dg, 
-1 

E9”,,z = i h0, dg 
-1 -1 

1 

EN,.O = s N&d& 81‘; = ’ Tt, d i E 
-1 "1 

ah- 6) and #b fs) are the boundary values of the unctions A, and BP on 

88, Sk is an operator introduced according to the rule [9] Skn, z &dA, / &Z 

and S,* is its conjugate, and IT is the area of 8,. 

From (3.5) it follows that the induced potential difference 9 is connected 

only with the biharmonic and potential parts of the deformation of the plate symmet - 
rical relative to the middle surface. This fact becomes obvious in the case of the in - 
verse piezo-effect . An application of electric potential difference to the plate end 
electrodes cannot produce bending, nor torsional deformation l 

If we use (3,3) and (3,4) to eliminate from (3.2) the functions czk and &S 

we obtain at once the boundary conditions for the functions @i, which determine the 

internal electroelastic state of the plate. 

4, Taking & as a small parameter, we seek the solution of I%& (3.2-(3.5) 
in the form of the following series [5 1: 

@i = @)i* + &Qil + . f *my ak (8) = ah-@ + eu,, + . , . 

fip @) = ppo + E&JI + - . +, 9’ = “PO + ET1 -I- . . . 

We can assume here that the external physical factors acting on r can be 

represented in the form 

N (s, E) = E (N(O) + ENi! + . . .), 1’ (s, E) = E (T(O) + ET(~) + . . .) 
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2 (s, E) = &2 (Z(O) + &Z(i) + . . .), a (s, E) = E2 (h(O) 

and are sufficiently smooth,slowly varying functions of s. 

+ eh(‘) + . . .) 

Using the asymptotic expansions of the operators 5, and Sk* [9] we obtain, 
from (3. z)-(3. 5) the boundary conditions for the functions @i, A,, BP and the 

constant Cp , in every approximation in E. In zero approximation we find 

2% [Qnqoln=o = No(O), 2a,, [Qsa$Oln=O = T,(O) (4.1) 

r_ 2 
1 T ~66 $ Q920 + $ (ana + bag2 + 4 -; Ao~20],_, = (4.2) 

go’ + $Al:j 

[I+ %Q,@20 - + (amg, + bag2 + ~1) Ao~,o]n=o = M% 

jl (Y~2&d?S + y&Z)k - ~m2J$3:~)ako = y,N$ - 22) - (4.3) 

J&&q) - 2~~~~rn [Qn (@@IO + &‘@zo)ln=o + y,&) [Ao@‘zoln=o 

pro = - (uluA2)-’ [T,“(O) - 2u446r-2tr(0)(2s~201n=0 

Thus the internal electroelastic state of the plate is determined, with the accu- 
racy of the order of E , from the boundary value problems (4.1) and (4.2) which 
are equivalent to the plane problem of the theory of elasticity and of the problem of 

bending. 
Expressing the biharmonic function or in terms of the analytic functions 

cp (2) and 9 (a) 

~cz&~ = zcp + zF + x (2) + x (z), dxldz = 9 (z) (z=El+iE2) 

we can write the condition (4.1) in the classical form [lo ] 

dlds (cpo + z go’ + Qo) = i (Xnoco) + iYno(0)) 

X$’ = -+ 1 (Nt’l - Tf’m) d& y(O) 
no = _+ \ (go’ m + Tt’L) dc 

-1 -1 

l = cos (n, El), m = cos (n, E,) 

It is clear that the matrix of the infinite system (4.3 ) is independent of the load 
and the plate geometry, and remains the same in all approximations in e - 

As in the theory of elastic plates [ 3, 5, 9 1, the potential and rotational solu - 

tions in terms of the stresses IS,, oS, o,, , and in the present case also in terms of DE, 

are of the same order in E as the biharmonic solution, Moreover, the boundary layer 

solutions determine the behavior of cr-,, oEs, oznr D, and D, on r and the 

latter are found to be of the same order in E as olL, oS, o,,, and DC. 
The author thanks Iu. A. Ustinov for suggesting the problem and for valuable 

advice. 
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